The Method of Lower and Upper Solutions for Second, Third, Fourth, and Higher Order Boundary Value Problems
نویسندگان
چکیده
منابع مشابه
Upper and Lower Solutions Method for Fourth-order Periodic Boundary Value Problems
The purpose of this paper is to prove the existence of a solution of the following periodic boundary value problem ( u(t) = f(t, u(t), u′′(t)), t ∈ [0, 2π] u(0) = u(2π), u′(0) = u′(2π), u′′(0) = u′′(2π), u′′′(0) = u′′′(2π) in the presence of an upper solution β and a lower solution α with β ≤ α, where f(t, u, v) satisfies one side Lipschitz condition.
متن کاملExistence of positive solutions for fourth-order boundary value problems with three- point boundary conditions
In this work, by employing the Krasnosel'skii fixed point theorem, we study the existence of positive solutions of a three-point boundary value problem for the following fourth-order differential equation begin{eqnarray*} left { begin{array}{ll} u^{(4)}(t) -f(t,u(t),u^{prime prime }(t))=0 hspace{1cm} 0 leq t leq 1, & u(0) = u(1)=0, hspace{1cm} alpha u^{prime prime }(0) - beta u^{prime prime pri...
متن کاملPeriodic Boundary Value Problems and Periodic Solutions of Second Order FDE with Upper and Lower Solutions∗
We use the monotone iterative technique with upper and lower solutions in reversed order to obtain two monotone sequences that converge uniformly to extremal solutions of second order periodic boundary value problems and periodic solutions of functional differential equations(FDEs).
متن کاملOn Second Order Periodic Boundary-value Problems with Upper and Lower Solutions in the Reversed Order
In this paper, we study the differential equation with the periodic boundary value u′′(t) = f(t, u(t), u′(t)), t ∈ [0, 2π] u(0) = u(2π), u′(0) = u′(2π). The existence of solutions to the periodic boundary problem above with appropriate conditions is proved by using an upper and lower solution method.
متن کاملNON-POLYNOMIAL SPLINE SOLUTIONS FOR SPECIAL NONLINEAR FOURTH-ORDER BOUNDARY VALUE PROBLEMS
We present a sixth-order non-polynomial spline method for the solutions of two-point nonlinear boundary value problem u(4)+f(x,u)=0, u(a)=α1, u''(a)= α2, u(b)= β1,u''(b)= β2, in off step points. Numerical method of sixth-order with end conditions of the order 6 is derived. The convergence analysis of the method has been discussed. Numerical examples are presented to illustrate the applications ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Analysis and Applications
سال: 1994
ISSN: 0022-247X
DOI: 10.1006/jmaa.1994.1250